The Berkeley 3D Object Dataset
نویسندگان
چکیده
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.
منابع مشابه
3D Scene and Object Classification Based on Information Complexity of Depth Data
In this paper the problem of 3D scene and object classification from depth data is addressed. In contrast to high-dimensional feature-based representation, the depth data is described in a low dimensional space. In order to remedy the curse of dimensionality problem, the depth data is described by a sparse model over a learned dictionary. Exploiting the algorithmic information theory, a new def...
متن کاملIntroducing MVTec ITODD - A Dataset for 3D Object Recognition in Industry
We introduce the MVTec Industrial 3D Object Detection Dataset (MVTec ITODD), a public dataset for 3D object detection and pose estimation with a strong focus on objects, settings, and requirements that are realistic for industrial setups. Contrary to other 3D object detection datasets that often represent scenarios from everyday life or mobile robotic environments, our setup models industrial b...
متن کاملYale-CMU-Berkeley dataset for robotic manipulation research
In this paper, we present an image and model dataset of the real-life objects from the Yale-CMU-Berkeley Object Set, which is specifically designed for benchmarking in manipulation research. For each object, the dataset presents 600 highresolution RGB images, 600 RGB-D images and five sets of textured three-dimensional geometric models. Segmentation masks and calibration information for each im...
متن کامل3D Geometric Shape Modeling by ‘3D Contour Cloud’ Reconstruction from Stereo Videos
We present a shape representation for objects based on 3D contour fragments that build a ‘3D Contour Cloud’. Our approach for the automatic reconstruction of such ‘3D Contour Clouds’ from calibrated stereo image sequences includes a novel idea on the reconstruction of 3D contour fragments from stereo frame pairs and a robust Structure and Motion analysis. Moreover, we propose an extension of 2D...
متن کاملConditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area
Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...
متن کامل